如圖,拋物線y x2 bx c與X軸交於A 1,0 B 3,0 兩點急

2021-10-13 20:33:38 字數 2763 閱讀 4761

1樓:百度網友

(1)把a、b兩點帶入拋物線解析式後算得

b=-2,c=3

∴y=-x²-2x+3

(2)對稱軸:x=-1

使得△qac的周長最小,即qc+qa最小,a點的對稱點為b點,連線bc和對稱軸的交點即q點。q(-1,2)

(3)使△pbc的面積最大,即拋物線上到直線bc距離最遠,做bc的平行線y=x+b

帶入拋物線:x²+3x+b-3=0

判別式=0

9=4(b-3) ,b=21/4

直線:y=x+ 21/4 和拋物線的交點p(-3/2 ,15/4)到bc的距離=(21/4 -3 )/√2

bc=3√2

s△pbc=27/8

2樓:百度網友

解:1、因為拋物線y=-x2+bx+c與x軸交於a(1,0)、b(-3,0)兩點

所以拋物線的頂點橫座標為x=-1

又因為拋物線的橫座標為:x=b/2 所以b=-2

所以y=x^2-x+c

因為點a(1,0) 所以c=-3 所以拋物線的解析式為:y=x^2-2x-3

2、因為點q在拋物線對稱軸上,所以可設點q的座標為(-1,y)

由(1)可得,y=x^2-2x-3

所以點c的座標為(0,-3)

所以kac=3, kqc=-y-3

所以當kackqc=-1時,即直線ac與直線qc相垂直時,△qac的周長最小。(根據垂線段最短原理)

所以3*(-y-3)=-1

y=-8/9

所以點q的座標為(-1,-8/9)

3、連線pb,pc,bc 設點p的座標為(m,n).

因為點b(-3,0),c(0,-3)

所以kbc=-1

所以bc所在的直線方程為:y=-x-3

接下來你自己解了吧,,按著我這思路解: 延長bc,,過點p做pd垂直於bc於d.

在用點到直線的距離公式,求出pd的最大距離,得到 △pbc的面積最大

呵呵,,就這樣吧,,,

3樓:匿名使用者

(1)比較簡單,答案是y= -x2-2x+3

(2)作c關於對稱軸的對稱點c'(-2,3),連結ac'與對稱軸交點即為點q,並求ac'解析式,把x=-1代入即可,答案為q(-1,2)

(3)設p(x,-x2-2x+3),過點p做x軸的垂線交bc於m,則兩小三角形面積和就是所求的三角形面積。高之和一定,為3,求bc解析式y-x+3,所以底pm=(-x2-2x+3)-(x+3)= -x2-3x。求出pm最大值即可。

此時x=3/2,最終答案自己算吧……

如圖,拋物線y=x 2 +bx+c與x軸交於a(-1,0)、b(3,0)兩點,直線l與拋物線交於a、c兩點,其中c點的橫

4樓:手機使用者

綜合四種情況可得出,存在4個符合條件的f點

(2015•龍東中考)如圖,拋物線y=x²-bx+c交x軸於點a(1,0),交y軸於點b,對稱軸

5樓:匿名使用者

^^(1)拋物線y=x^2-bx+c交來x軸於點a(1,0),∴源1-b+c=0,

對稱軸x=b/2=2,

解得b=4,c=3,

∴拋物線bai的解析式是du

zhiy=x^2-4x+3.

(2)b(0,3)關於對稱軸x=2的對稱點b'是(4,3),∴pa+pb=pa+pb'>=ab',當a,p,b'三點dao共線時取等號,

這時△pab的周長最小,p的座標為(2,1)。

6樓:賀琪煒

以下內容來自來作業幫:

(1)由源題意得,

bai1-b+c=0b2=2,解得b=4,c=3,∴拋物線的解du析式為.y=x2-4x+3;(zhi2)∵點a與點c關於daox=2對稱,∴連線bc與x=2交於點p,則點p即為所求,根據拋物線的對稱性可知,點c的座標為(3,0),y=x2-4x+3與y軸的...

問題解析

(1)根據拋物線經過點a(1,0),對稱軸是x=2列出方程組,解方程組求出b、c的值即可;

(2)因為點a與點c關於x=2對稱,根據軸對稱的性質,連線bc與x=2交於點p,則點p即為所求,求出直線bc與x=2的交點即可.

名師點評

本題考點:

待定係數法求二次函式解析式 軸對稱-最短路線問題

考點點評:

本題考查的是待定係數法求二次函式的解析式和最短路徑問題,掌握待定係數法求解析式的一般步驟和軸對稱的性質是解題的關鍵.

7樓:大後天穿拖鞋

對稱軸為x=2推出baib=4

然後代入

dua點座標得出c=3

所以zhi解析式為y=x²-4x+3(然後dao可得b座標為(0,3),

版後面有用權)

作a點關於對稱軸的對稱點,為c(3,0)

連線bc,其與對稱軸的交點即為所求p,座標為(2,1)

8樓:

(1)拋bai

物線y=x^2-bx+c交x軸於點dua(1,0),∴1-b+c=0,

對稱軸x=b/2=2,

解得b=4,c=3,

∴拋zhi物線的解析式是daoy=x^2-4x+3.

(2)b(0,3)關於對

稱軸x=2的對稱點內b'是(4,3),

∴pa+pb=pa+pb'>=ab',當a,p,b'三點共線時取等號,容

這時△pab的周長最小,p的座標為(2,1)。