請問根號下1 sinx的平方在0到pi 2上的定積分怎麼求呢? 5

2025-06-10 16:24:30 字數 3744 閱讀 1724

請問根號下1+sinx的平方在0到pi/2上的定積分怎麼求呢?

1樓:網友

如何求∫(0→pi/2)√(1+sin²x)dx的定積分

該定積分是屬於橢圓積分。

可以按下列步驟計算:

第一步巖灶陪,該積分用t=sinx替換,變換後得到 ∫(0→1)√(1+t²)/1-t²)dt,

第二步,將得到變換後的積分化為橢圓積分的形式,即√(2)×e(1/√(2),pi/2)

第三步,使用粗蠢完全辯野橢圓積分表(一般數學手冊上都有),查得 e(1/√(2),pi/2)=

第四步,計算得到 ∫(0→pi/2)√(1+sin²x)dx=√(2)×e(1/√(2),pi/2)=√2)×

詳細計算過程如下:

2樓:網友

精確的解析解算不出來的,這裡用辛普森四坦廳乎伏橋點公式求數值解。

令f(x)=√1+sin^2x)

令x0=0,x1=π/6,x2=π/3,x3=π/2,步長h=π/6(0,π/2) √讓悉(1+sin^2x)dx(3h/8)*[f(x0)+3f(x1)+3f(x2)+f(x3)](/16)*[f(0)+3f(π/6)+3f(π/3)+f(π/2)]

3樓:網友

分享一種解法,利用第一類尤拉積分、鬥鄭第二類尤拉積分空戚頌及其相互關係求解。

令仔仔sinθ=x^(1/4)。原式=(1/4)(1+√x)[x^(-3/4)]dx/√(1-x)=(1/4)[b(1/2,1/4)+b(1/2,3/4)。

原式=[(1/4)/√2π)]1/4)+4γ²(3/4)]。

求解下根號1+sin2x的定積分

4樓:網友

解:∫(0,π)1+sin2x)dx=∫(0,π)cos^2x+sin^2x+2sinxcosx)dx=∫(0,π)cosx+sinx)^2dx

(0,3π/4)(cosx+sinx)dx-∫(3π/4,π)cosx+sinx)dx

sinx-cosx](0,3π/4)-[sinx-cosx](3π/4,π)

見下圖:不定積分的公式:

1、∫ a dx = ax + c,a和c都是常數。

2、∫ x^a dx = [x^(a + 1)]/(a + 1) +c,其中a為常數且 a ≠ 1

3、∫ 1/x dx = ln|x| +c

4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + c

6、∫ cosx dx = sinx + c

7、∫ sinx dx = - cosx + c

8、∫ cotx dx = ln|sinx| +c = - ln|cscx| +c

5樓:伱i汝非吾

這裡問題在於 在(0,π)的範圍內,sinx+cosx=√2sin(x+π/4)並非恒大於零,根號不能直接去,需要對(0,π)拆分。

6樓:茹翊神諭者

應該是|sinx+cosx|,平方後開根號都要加絕對值。

根號下(1-sinx)在0到派的定積分如何計算,求詳細過程

7樓:網友

根號下(1-sinx平方)=|cosx|

原式=∫(0,π/2)cosxdx+∫(/2,π)cosxdx=sinx|(0,π/2)-sinx|(π/2,π)=1+1

2不定積分的公式。

1、∫ a dx = ax + c,a和c都是常數2、∫ x^a dx = [x^(a + 1)]/(a + 1) +c,其中a為常數且 a ≠ 1

3、∫ 1/x dx = ln|x| +c4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + c

6、∫ cosx dx = sinx + c7、∫ sinx dx = - cosx + c8、∫ cotx dx = ln|sinx| +c = - ln|cscx| +c

8樓:學無止境奮鬥

考慮1-sinx=1-2sinx/2cosx/2=(sinx/2-cosx/2)^2,然後積分即可。

9樓:茹翊神諭者

有任何疑惑,歡迎追問。

10樓:小茗姐姐

方法如下圖所示,請認真檢視,祝學習愉快,學業進步!

定積分(0到根號下2π)sinx^2dx,平方是x的

11樓:網友

定積分(0到根號下2π)sinx^2dx

定積分(根號下π/6到根號下π/2)sinx^2dx

定積分(根號下π/6到根號下π/2)sin(π/6)dx

一般定理

定理1:設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。

定理2:設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。

定理3:設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。

12樓:網友

做變數代換 t=x^2 dt=2xdx=2√tdx

定積分(0到2π) sint)/(2√t) dt

定積分(0到π) sint)/(2√t) dt+定積分(π到2π) sint)/(2√t) dt

定積分(0到π) sint)/(2√t) dt+定積分(0到π) sin(u+π)/(2√(u+π)du

定積分(0到π) sint)/(2√t) dt-定積分(0到π) sin(t+π)/(2√(t+π)dt

定積分(0到π) sint)[1/(2√t)-1/(2√(t+π)dt

注意t屬於(0到π)時 sint>0 1/(2√t)-1/(2√(t+π)0

所以原積分大於0

不定積分根號下x平方 要是根號下(1+sin2x)呢

13樓:世紀網路

答:∫√x^2)dx=∫|x|dx=x|x|/讓衝2 + c ∫√1+sin2x)dx=∫√sinx+cosx)^2 dx=∫|sinx+cosx|dx=√2∫|sin(x+π/4)|dx=-√拆滑簡旅褲2cos(x+π/4) x∈[-4+2kπ,3π/4+2kπ)(k為整數).√2cos(x+π/4) x∈[3π/4+2kπ,7π/4+2k...

1+sinx的平方開根號的不定積分怎麼求?

14樓:亞浩科技

√(1+sinx)漏芹dx

(1+2sin(x/2)*cos(x/春喊2))dx∫[sin(x/2)+cos(x/2)]dx2sin(x/2)-2cos(x/2)+cc為返森畢任意常數,2,

1+sinx的平方開根號的不定積分怎麼求

15樓:戶如樂

√(1+sinx)dx

橡知(1+2sin(x/2)*cos(x/2))dx∫[sin(x/2)+cos(x/2)]dx2sin(x/2)-2cos(x/梁毀消餘賀2)+cc為任意常數。

sinx在0到的面積是1還是,sinx在0到 的面積是1還是0?

分析過程如下 面積 62616964757a686964616fe4b893e5b19e31333431343734 0 sinxdx cosx 0 cos cos0 1 1 2x 0,sinx與x軸圍成的面積為2。擴充套件資料 定積分是把函式在某個區間上的圖象 a,b 分成n份,用平行於y軸的直線...

1a的平方大於等於0,那1a大於等於根號0?對嗎,為什麼

不對 負數的平方大於零 但是 負數是小於零的 錯 1 a 可能是負數 a大於等於0,小於等於1,a的絕對值 a 1 的絕對值 根號a 1的平方 化簡 本題用以下性質 x 0 x x。x 0時 x x。根號x 2 x 而由0 a 1知a 0,1 a 0。所以原式 a 1 a 1 a 2 a。希望對你有...

若實數a,b滿足b根號下a的平方1根號下1a的平方再

根號下a的平方 1 根號下1 a的平方有意義則有a 2 1 0同時滿足1 a 2 0 得a 2 1,a 1,b 4 當a 1時a b 1 4 5,則a b的算術平方根為根號5當a 1時a b 1 4 3,則a b的算術平方根為根號3所以a b的算術平方根為根號3或根號5。已知a為 根號170 的整數...