多元函式中函式連續偏導存在全微分存在和偏導連續之間的

2021-03-22 04:09:23 字數 5448 閱讀 8039

1樓:匿名使用者

應該都正確,偏導連續只需要一階連續就可以了,二階連續必然一階連續

偏導數存在且連續,可微,函式連續,偏導數存在,這四個有什麼關係?

2樓:關鍵他是我孫子

二元函式連續、偏導數存在、可微之間的關係:

書上定義:

可微一定可導,可導一定連續。可導不一定可微,連續不一定可導。

1、若二元函式f在其定義域內某點可微,則二元函式f在該點偏導數存在,反過來則不一定成立。

2、若二元函式函式f在其定義域內的某點可微,則二元函式f在該點連續,反過來則不一定成立。

3、二元函式f在其定義域內某點是否連續與偏導數是否存在無關。

4、可微的充要條件:函式的偏導數在某點的某鄰域記憶體在且連續,則二元函式f在該點可微。

擴充套件資料:判斷可導、可微、連續的注意事項:

1、在一元的情況下,可導=可微->連續,可導一定連續,反之不一定。

2、二元就不滿足以上的結論,在二元的情況下:

(1)偏導數存在且連續,函式可微,函式連續。

(2)偏導數不存在,函式不可微,函式不一定連續。

(3)函式可微,偏導數存在,函式連續。

(4)函式不可微,偏導數不一定存在,函式不一定連續。

(5)函式連續,偏導數不一定存在,函式不一定可微。

(6)函式不連續,偏導數不一定存在,函式不可微。

3樓:三關白馬

可微必定連續且偏導數存在

連續未必偏導數存在,偏導數存在也未必連續

連續未必可微,偏導數存在也未必可微

偏導數連續是可微的充分不必要條件

4樓:匿名使用者

偏導數存在且連續是可微的充分條件

可微必連續,可微必偏導數存在,反之不成立。

連續和偏導數存在是無關條件

偏導數存在且連續是連續的充分條件

偏導數存在且連續是偏導數存在的充分條件。

怎麼給人講清楚多元函式全微分與偏導數的關係

5樓:pasirris白沙

1、偏導數,partial differentiation,一般是指沿著 x 方向、或 y 方向、

或 z 方向的導數;導數在美語中,喜歡用 derivative。

2、無論是沿著 x、y、z 哪個方向的導數,計算導數的方法,跟一元函式

求導數的方法,完全一樣;對 x 方向求導時,將 y、z 當成常數對待;

3、進一步推廣到任意方向,在任意方向上的導數,稱為方向導數,directional

differentiation,或 directional derivative;

4、方向導數的概念,其實也是偏導數的概念,但是寫成全導數的形式;

5、方向導數寫成全導數 total differentiation 的形式,原因是方向導數的

計算一般是由 x、y、z 三個方向的偏導數的分量 ***ponent 相加而成;

6、全導數,就是全微分,在英文中沒有絲毫區別,導數跟微分的區別是中國

微積分概念,不是國際通用微積分的概念;

7、全微分的意思是 : 函式的的無窮小增量 du,**於三個方向上的無窮小

相加而成,即 du = (∂u/∂x)dx + (∂u/∂y)dy + (∂u/∂z)dz。

歡迎追問,歡迎討論,中英文不限。

最好是用英文討論,因為用英文討論,不會產生中文中的歧義,看英文**

不會出現概念的誤解,中文微積分的一些概念在英文中是不存在的,會產生

誤會而難以準確理解國際微積分的真實含義。

6樓:幸運的

dz=fx(x,y)δx+fy(x,y)δy,dz是全微分,fx、fy是對x、y的偏導數。

如果函式z=f(x, y) 在(x, y)處的全增量

δz=f(x+δx,y+δy)-f(x,y)

可以表示為

δz=aδx+bδy+o(ρ),

其中a、b不依賴於δx, δy,僅與x,y有關,ρ趨近於0(ρ=√[(δx)2+(δy)2]),此時稱函式z=f(x, y)在點(x,y)處可微分,aδx+bδy稱為函式z=f(x, y)在點(x, y)處的全微分,記為dz即

dz=aδx +bδy

該表示式稱為函式z=f(x, y) 在(x, y)處(關於δx, δy)的全微分。

在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

在一元函式中,我們已經知道導數就是函式的變化率。對於二元函式我們同樣要研究它的「變化率」。然而,由於自變數多了一個,情況就要複雜的多。

在xoy平面內,當動點由p(x0,y0)沿不同方向變化時,函式f(x,y)的變化快慢一般說來是不同的,因此就需要研究f(x,y)在(x0,y0)點處沿不同方向的變化率。

在這裡我們只學習函式f(x,y)沿著平行於x軸和平行於y軸兩個特殊方位變動時,f(x,y)的變化率。

偏導數的運算元符號為:∂。

偏導數反映的是函式沿座標軸正方向的變化率。

表示固定面上一點的切線斜率。

偏導數f'x(x0,y0)表示固定面上一點對x軸的切線斜率;偏導數f'y(x0,y0)表示固定面上一點對y軸的切線斜率。

高階偏導數:如果二元函式z=f(x,y)的偏導數f'x(x,y)與f'y(x,y)仍然可導,那麼這兩個偏導函式的偏導數稱為z=f(x,y)的二階偏導數。

二元函式的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy.

注意:f"xy與f"yx的區別在於:前者是先對x求偏導,然後將所得的偏導函式再對y求偏導;後者是先對y求偏導再對x求偏導.

當f"xy與f"yx都連續時,求導的結果與先後次序無關。

7樓:向真丶

1.偏導數不存在

,全微分就不存在

2.全微分若存在,偏導數必須存在

3.有偏導數存在,全微分不一定存在

微分是函式改變數的線性主要部分,導數是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數。

8樓:匿名使用者

偏導數存在是全微分的必要而非充分條件

怎樣理解多元函式,連續與偏導存在的關係,偏導連續之間的關係

9樓:angela韓雪倩

多元函式連續不是偏導存在的充分條件也不是必要條件。

而偏導連續則是更強的條件,即偏導存在且連續可以推出多元函式連續,反之不可。

下面來分析,首先大家需要了解這些定義都是人定義出來的,可以反映多元函式的部分特徵。所以,只要掌握了這些定義的意義就可以看出其背後的本質,才能判斷定義間的相互關係。

多元函式在某點可偏導,可是可能在這點沿不同方向的極限不同,所以不一定連續。

而連續函式的偏導是不是一定存在,這個例子在一元函式裡也很常見,比如x的絕對值,在x=0的時候沒有導數。

偏導連續(是偏導連續哦!而不是偏導數存在+函式連續!是偏導數存在且偏導數連續),是可以推出可微的。

而可微是很強的結論,因為可以用十分特殊的線性函式來逼近的話,很多特殊的反例就不見了,而線性函式是連續的,這由定義可以看出來。

所以,偏導存在且連續可以推出函式連續,反之不能。

反例沿用之前的反例,函式連續,但偏導不存在。

10樓:筆記本在記錄我

【升級版答案】

偏導連續是高富帥,可以推出函式可微這個路人。函式可微這個路人可以推出函式連續和偏導存在(即可偏導)這兩個吊絲。吊絲之間沒有任何關係。

★一句話總結:高富帥→路人→兩個吊絲★

下面是原答案。

首先有兩點要說明一下。

1.偏導數存在且連續=偏導數連續。

2.要分清函式連續和偏導數連續。可微指的是函式可微。

下面來回答問題。

1.偏導數存在與函式連續無任何必然關係。

2.偏導數連續是函式連續的充分不必要條件。

3.偏導數存在且有界是函式連續的充分不必要條件。(額外補充)(注意有界二字!)

4.偏導數連續是可微的充分不必要條件。

5.可微是偏導數存在的充分不必要條件。

6.可微是函式連續的充分不必要條件。

接著對於疑問點較多的第一點給予更詳細的解釋。(連續不能推出可導,這個大家都知道,我就不贅述了。)

函式連續通俗一點說,就是一元函式在曲線上沒有空心點,二元函式在面上的任何一個方向上沒有空心點。二元函式在某點連續要求面上的該點在其周圍360°的鄰域內都不存在空心。而二元函式有偏導的必要條件是該點在x軸方向和y軸方向上的鄰域沒有空心,充要條件即滿足偏導數的極限定義式。

所以,二元函式的偏導數無論是否存在,只能保證該函式在x軸與y軸方向上的連續性,無法保證該點360°鄰域上的連續性,因而函式的連續也是未知的。

最後說一句不太理解點踩的人是什麼想法,我說的這麼直白你都看不懂嗎。

11樓:一頁千機

先回答問題:

1.多元函式連續不是偏導存在的充分條件也不是必要條件。

2.而偏導連續則是更強的條件,即偏導存在且連續可以推出多元函式連續,反之不可。

下面來分析,首先大家需要了解這些定義都是人定義出來的,可以反映多元函式的部分特徵。所以,只要掌握了這些定義的意義就可以看出其背後的本質,才能判斷定義間的相互關係。

定義1.多元函式連續,f為多元函式,對於其定義域內任一聚點x,當一列趨近於x時,f(xn)趨近於f(x),則稱f在定義域上連續。需要注意的是,這裡的是可以用任何方式趨近x的,是任何方式!!

這就是很關鍵的一點了,後面的很多判斷也是基於此。

2.多元函式偏導存在,具體定義這裡不好打出來。我說一下,和一元函式十分類似的定義,把其餘的元視為常量,然後求函式值之差和自變數之差的商的極限即可。

這裡的關鍵是,只在一個方向上的極限!

3.多元偏導數存在且連續,結合1.2的定義即可。

所以,由1.2定義可以看出來多元函式連續和其偏導存在是沒有直接聯絡的。

多元函式在某點可偏導,可是可能在這點沿不同方向的極限不同,所以不一定連續。

而連續函式的偏導是不是一定存在,這個例子在一元函式裡也很常見,比如x的絕對值,在x=0的時候沒有導數。

而偏導連續這就很強了。我們這裡引入多元函式可微的概念,具體定義敘述很麻煩。

我的理解是類似於用多元線性函式來逼近一般多元函式。

而偏導連續(是偏導連續哦!而不是偏導數存在+函式連續!是偏導數存在且偏導數連續),是可以推出可微的。(這個證明我也沒有寫,參見北京大學出版社的《數學分析3》作者伍勝健)

而可微是很強的結論,因為可以用十分特殊的線性函式來逼近的話,很多特殊的反例就不見了,而線性函式是連續的,這由定義可以看出來。

所以,偏導存在且連續可以推出函式連續,反之不能。

反例沿用之前的反例,函式連續,但偏導不存在。

以上,有我沒有解釋清楚或者沒有看懂的可以追問。

謝謝**~

一階偏導函式連續則該多元函式連續如何證明

書上有定理 一階偏導函式連續 可微。可微 則連續。所以,一階偏導函式連續 連續。高數多元函式的偏導連續,則該函式可微,證明過程中,二元函式連續 復偏導數存在 可微之間 制的關係 1 若二元函式f在其定義域內某點可微,則二元函式f在該點偏導數存在,反過來則不一定成立。2 若二元函式函式f在其定義域內的...

複合函式求偏導,多元複合函式高階偏導求法

書上的就是具體的步驟 這是複合函式求導 你可以看成x r對x求導 不就是上面導數 下面 上面 下面導數 因為是對x求導 所以下面的導數是r 1 r對x的偏導 多元複合函式高階偏導求法 多元複合函式高階偏導求法如下 一 多元複合函式偏導數 上面公式可以簡單記為 連線相乘,分線相加 也可以藉助微分形式不...

複合函式偏導數,多元複合函式高階偏導求法

你好!注意對z求導時,y看作常數,第二項用乘法公式求導。經濟數學團隊幫你解答,請及時採納。謝謝!這是二元函式的偏導數問題,二元函式求偏導數中,x與y是沒關係的,也就是對x求偏導,可以把y看作常數。因為當baif x,y 對x求導的時候,是把y當成du常數對待的,所以無zhi論怎麼對x求導,y還是 d...