矩陣在現實生活中有哪些應用,矩陣在現實生活中的應用

2021-03-03 20:44:12 字數 6269 閱讀 7181

1樓:111111前的

1、矩陣在經濟生活中的應用

矩陣就是在行列式的基礎上演變而來的,可活用行列式求花費總和最少等類似的問題;可借用特徵值和特徵向量**若干年後的汙水水平等問題;也可利用矩陣的方法求線性規劃問題中的最優解,求解企業生產哪一種型別的產品,獲得的利潤最大。

2、在人口流動問題方面的應用

這是矩陣高次冪的應用,比如**未來的人口數量、人口的發展趨勢等。

3、矩陣在密碼學中的應用

可用可逆矩陣及其逆矩陣對需傳送的祕密訊息加密和譯密。

4、矩陣在文獻管理中的應用

矩陣在現實生活中的應用

2樓:用一轉身去回憶

隨著現代科學的發展,數學中的矩陣也有更廣泛而深入的應用,下面列舉幾項矩陣在現實生活中的應用:

3樓:匿名使用者

矩陣的應用是很多的。尤其是在程式處理方面。在世界上存在的,都是離散的,那些理想的才是連續的~而矩陣可以很好地詮釋世界上的各種東西~例如我們經常處理的**,我們平時的資料等等。

4樓:張_許

在數學中,矩陣(matrix)是一個按照長方陣列排列的複數或實數集合、  ,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。

由 m × n 個數aij排成的m行n列的數表稱為m行n列的矩陣,簡稱m × n矩陣。記作:

這m×n 個數稱為矩陣a的元素,簡稱為元,數aij位於矩陣a的第i行第j列,稱為矩陣a的(i,j)元,以數 aij為(i,j)元的矩陣可記為(aij)或(aij)m × n,m×n矩陣a也記作amn。

元素是實數的矩陣稱為實矩陣,元素是複數的矩陣稱為復矩陣。而行數與列數都等於n的矩陣稱為n階矩陣或n階方陣 。

矩陣的研究歷史悠久,拉丁方陣和幻方在史前年代已有人研究。

在數學中,矩陣(matrix)是一個按照長方陣列排列的複數或實數集合[1]  ,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。作為解決線性方程的工具,矩陣也有不短的歷史。

成書最遲在東漢前期的《九章算術》中,用分離係數法表示線性方程組,得到了其增廣矩陣。在消元過程中,使用的把某行乘以某一非零實數、從某行中減去另一行等運算技巧,相當於矩陣的初等變換。但那時並沒有現今理解的矩陣概念,雖然它與現有的矩陣形式上相同,但在當時只是作為線性方程組的標準表示與處理方式。

矩陣正式作為數學中的研究物件出現,則是在行列式的研究發展起來後。邏輯上,矩陣的概念先於行列式,但在實際的歷史上則恰好相反。日本數學家關孝和(2023年)與微積分的發現者之一戈特弗裡德·威廉·萊布尼茨(2023年)近乎同時地獨立建立了行列式論。

其後行列式作為解線性方程組的工具逐步發展。2023年,加布里爾·克拉默發現了克萊姆法則。

矩陣的現代概念在19世紀逐漸形成。2023年代,高斯和威廉·若爾當建立了高斯—若爾當消去法。2023年,德國數學家費迪南·艾森斯坦(f.

eisenstein)討論了「變換」(矩陣)及其乘積。2023年,英國數學家詹姆斯·約瑟夫·西爾維斯特(james joseph sylvester)首先使用矩陣一詞。

英國數學家阿瑟·凱利被公認為矩陣論的奠基人。他開始將矩陣作為獨立的數學物件研究時,許多與矩陣有關的性質已經在行列式的研究中被發現了,這也使得凱利認為矩陣的引進是十分自然的。他說:

「我決然不是通過四元數而獲得矩陣概念的;它或是直接從行列式的概念而來,或是作為一個表達線性方程組的方便方法而來的。」他從2023年開始,發表了《矩陣論的研究報告》等一系列關於矩陣的專門**,研究了矩陣的運算律、矩陣的逆以及轉置和特徵多項式方程。凱利還提出了凱萊-哈密爾頓定理,並驗證了3×3矩陣的情況,又說進一步的證明是不必要的。

哈密爾頓證明了4×4矩陣的情況,而一般情況下的證明是德國數學家弗羅貝尼烏斯(f.g.frohenius)於2023年給出的[4]  。

2023年時法國數學家埃爾米特(c.hermite)使用了「正交矩陣」這一術語,但他的正式定義直到2023年才由費羅貝尼烏斯發表。2023年,費羅貝尼烏斯引入矩陣秩的概念。

至此,矩陣的體系基本上建立起來了。

2023年時法國數學家埃爾米特(c.hermite)使用了「正交矩陣」這一術語,但他的正式定義直到2023年才由費羅貝尼烏斯發表。2023年,費羅貝尼烏斯引入矩陣秩的概念。

至此,矩陣的體系基本上建立起來了。

無限維矩陣的研究始於2023年。龐加萊在兩篇不嚴謹地使用了無限維矩陣和行列式理論的文章後開始了對這一方面的專門研究。2023年,希爾伯特引入無限二次型(相當於無限維矩陣)對積分方程進行研究,極大地促進了無限維矩陣的研究。

在此基礎上,施密茨、赫林格和特普利茨發展出運算元理論,而無限維矩陣成為了研究函式空間運算元的有力工具。

矩陣的概念最早在2023年見於中文。2023年,程廷熙在一篇介紹文章中將矩陣譯為「縱橫陣」。2023年,科學名詞審查會算學名詞審查組在《科學》第十卷第四期刊登的審定名詞表中,矩陣被翻譯為「矩陣式」,方塊矩陣翻譯為「方陣式」,而各類矩陣如「正交矩陣」、「伴隨矩陣」中的「矩陣」則被翻譯為「方陣」。

2023年,中國數學會審查後,中華**教育部審定的《數學名詞》(並「通令全國各院校一律遵用,以昭劃一」)中,「矩陣」作為譯名首次出現。2023年,曹惠群在接受科學名詞審查會委託就數學名詞加以校訂的《算學名詞彙編》中,認為應當的譯名是「長方陣」。中華人民共和國成立後編訂的《數學名詞》中,則將譯名定為「(矩)陣」。

2023年,中國自然科學名詞審定委員會公佈的《數學名詞》中,「矩陣」被定為正式譯名,並沿用至今。

矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。 在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;電腦科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。

將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算演算法。關於矩陣相關理論的發展和應用,請參考矩陣理論。

在天體物理、量子力學等領域,也會出現無窮維的矩陣,是矩陣的一種推廣。

影象處理

在影象處理中影象的仿射變換一般可以表示為一個仿射矩陣和一張原始影象相乘的形式,例如:

線性變換及對稱

線性變換及其所對應的對稱,在現代物理學中有著重要的角色。例如,在量子場論中,基本粒子是由狹義相對論的洛倫茲群所表示,具體來說,即它們在旋量群下的表現。內含泡利矩陣及更通用的狄拉克矩陣的具體表示,在費米子的物理描述中,是一項不可或缺的構成部分,而費米子的表現可以用旋量來表述。

描述最輕的三種夸克時,需要用到一種內含特殊酉群su(3)的群論表示;物理學家在計算時會用一種更簡便的矩陣表示,叫蓋爾曼矩陣,這種矩陣也被用作su(3)規範群,而強核力的現代描述──量子色動力學的基礎正是su(3)。還有卡比博-小林-益川矩陣(ckm矩陣):在弱相互作用中重要的基本夸克態,與指定粒子間不同質量的夸克態不一樣,但兩者卻是成線性關係,而ckm矩陣所表達的就是這一點。

量子態的線性組合

2023年海森堡提出第一個量子力學模型時,使用了無限維矩陣來表示理論中作用在量子態上的運算元。這種做法在矩陣力學中也能見到。例如密度矩陣就是用來刻畫量子系統中「純」量子態的線性組合表示的「混合」量子態。

另一種矩陣是用來描述構成實驗粒子物理基石的散射實驗的重要工具。當粒子在加速器中發生碰撞,原本沒有相互作用的粒子在高速運動中進入其它粒子的作用區,動量改變,形成一系列新的粒子。這種碰撞可以解釋為結果粒子狀態和入射粒子狀態線性組合的標量積。

其中的線性組合可以表達為一個矩陣,稱為s矩陣,其中記錄了所有可能的粒子間相互作用。

簡正模式

矩陣在物理學中的另一類泛應用是描述線性耦合調和系統。這類系統的運動方程可以用矩陣的形式來表示,即用一個質量矩陣乘以一個廣義速度來給出運動項,用力矩陣乘以位移向量來刻畫相互作用。求系統的解的最優方法是將矩陣的特徵向量求出(通過對角化等方式),稱為系統的簡正模式。

這種求解方式在研究分子內部動力學模式時十分重要:系統內部由化學鍵結合的原子的振動可以表示成簡正振動模式的疊加[31]  。描述力學振動或電路振盪時,也需要使用簡正模式求解。

幾何光學

由一系列透鏡或反射元件組成的光學系統,可以很簡單地以對應的矩陣組合來描述其光線傳播路徑。

電子學

在電子學裡,傳統的網目分析(英語:mesh analysis)或節點分析會獲得一個線性方程組,這可以以矩陣來表示與計算。

5樓:匿名使用者

矩陣在許多領域都應用廣泛。有些時候用到矩陣是因為其表達方式緊湊,例如在博弈論和經濟學中,會用收益矩陣來表示兩個博弈物件在各種決策方式下的收益。文字挖掘和索引典彙編的時候,比如在tf-idf方法中,也會用到檔案項矩陣來追蹤特定詞彙在多個檔案中的出現頻率。

早期的密碼技術如希爾密碼也用到矩陣。

然而,矩陣的線性性質使這類密碼相對容易破解。

計算機影象處理也會用到矩陣來表示處理物件,並且用放射旋轉矩陣來計算物件的變換,實現三維物件在特定二維螢幕上的投影。

多項式環上的矩陣在控制論中有重要作用。

化學中也有矩陣的應用,特別在使用量子理論討論分子鍵和光譜的時候。具體例子有解羅特漢方程時用重疊矩陣和福柯矩陣來得到哈特里-福克方法中的分子軌道。

6樓:匿名使用者

一、矩陣圖法的涵義

矩陣圖法就是從多維問題的事件中,找出成對的因素,排列成矩陣圖,然後根據矩陣圖來分析問題,確定關鍵點的方法,它是一種通過多因素綜合思考,探索問題的好方法。 在複雜的質量問題中,往往存在許多成對的質量因素.將這些成對因素找出來,分別排列成行和列,其交點就是其相互關聯的程度,在此基礎上再找出存在的問題及問題的形態,從而找到解決問題的思路。 短陣圖的形式如圖所示,a 為某一個因素群,a1、a2、a3、a4、…是屬於a這個因素群的具體因素,將它們排列成行;b為另一個因素群,b1、b2、b3、b4、…為屬於b這個因素群的具體因素,將它們排列成列;行和列的交點表示a和b各因素之間的關係。

按照交點上行和列因素是否相關聯及其關聯程度的大小,可以探索問題的所在和問題的形態,也可以從中得到解決問題的啟示等。 質量管理中所使用的矩陣圖,其成對因素往往是要著重分析的質量問題的兩個側面,如生產過程中出現了不合格品時,著重需要分析不合格的現象和不合格的原因之間的關係,為此,需要把所有缺陷形式和造成這些缺陷的原因都羅列出來,逐一分析具體現象與具體原因之間的關係,這些具體現象和具體原因分別構成矩陣圖中的行元素和列元素。 矩陣圖的最大優點在於,尋找對應元素的交點很方便,而且不遺漏,顯示對應元素的關係也很清楚。

矩陣圖法還具有以下幾個點: ①可用於分析成對的影響因素; ②因素之間的關係清晰明瞭,便於確定重點; ③便於與系統圖結合使用。

二、矩陣圖法的用途 矩陣圖法的用途十分廣泛.在質量管理中.常用矩陣圖法解決以下問題: ①把系列產品的硬體功能和軟體功能相對應,並要從中找出研製新產品或改進老產品的切入點; ②明確應保證的產品質量特性及其與管理機構或保證部門的關係,使質量保證體制更可靠; ③明確產品的質量特性與試驗測定專案、試驗測定儀器之間的關係,力求強化質量評價體制或使之提高效率; ④當生產工序中存在多種不良現象,且它們具有若干個共同的原因時,希望搞清這些不良現象及其產生原因的相互關係,進而把這些不良現象一舉消除; ⑤在進行多變數分析、研究從何處入手以及以什麼方式收集資料。

三、矩陣圖的型別 矩陣圖法在應用上的一個重要特徵,就是把應該分析的物件表示在適當的矩陣圖上。因此,可以把若干種矩陣圖進行分類,表示出他們的形狀,按物件選擇並靈活運用適當的矩陣圖形。常見的矩陣圖有以下幾種:

(1)l型矩陣圖。是把一對現象用以矩陣的行和列排列的二元表的形式來表達的一種矩陣圖,它適用於若干目的與手段的對應關係,或若干結果和原因之間的關係。 (2)t型矩陣圖。

是a、b兩因素的l型矩陣和a、c兩因素的l型矩陣圖的組合矩陣圖,這種矩陣圖可以用於分析質量問題中「不良現象一原因一工序」之間的關係,也可以用於分析探索材料新用途的「材料成分一特性一用途」之間酌關係等。 (3)y型矩陣圖。是把a因素與b因素、b因素與c因素、c因素與a因素三個l型矩陣圖組合在一起而形成的矩陣圖。

(4) x型矩陣圖。是把a因素與b因素、b因素與c因素、c因素與d因素、d因素與a因素四個l型矩陣圖組合而形成的矩陣圖,這種矩陣圖表示a和b、d,d和 a、c,c和b、d,d和a、c這四對因素間的相互關係,如「管理機能一管理專案一輸入資訊一輸出資訊」就屬於這種型別。 (5)c型矩陣圖。

是以a、b、c三因素為邊做出的六面體,其特徵是以a、b、c三因素所確定的三維空間上的點為「著眼點」。

四、製作矩陣圖的步驟 製作矩陣圖一般要遵循以下幾個步驟: ①列出質量因素: ②把成對對因素排列成行和列,表示其對應關係; ③選擇合適的矩陣圖型別; ④在成對因素交點處表示其關係程度,一般憑經驗進行定性判斷,可分為三種:

關係密切、關係較密切、關係一般(或可能有關係),並用不同符號表示; ⑤根據關係程度確定必須控制的重點因素; ⑥針對重點因素作對策表。

現實生活中,光有幾種,現實生活中有哪些光汙染??

光的本質就是電磁波,但波的頻率各有不同。高有伽馬射線,倫琴射線再是紫外線,可見光,紅外線,低的無線電波。無線電波 3000米 0.3毫米 紅外線 0.3毫米 0.75微米 可見光 0.7微米 0.4微米 紫外線 0.4微米 10毫微米 x射線 10毫微米 0.1毫微米 射線 0.1毫微米 0.001...

在現實中有鬼嗎,現實生活中有鬼嗎?

鬼魂真的存在 死後有鬼魂的存在,鬼魂也就是一種磁場,有記憶的磁場。鬼魂和肉體是這樣的關係 人分肉體和鬼魂兩部分,身體為鬼魂服務,鬼魂又依賴於身體,器官的存在是為了身體健康保留,這樣才使鬼魂不消失。有的,不過只有少數人看得見,以前古人也看見過,有些書上也有記載,只不過現代沒有人看見,就否定了鬼的存在,...

姐弟戀在現實生活中有哪些障礙

有些家庭父母很難接受姐弟戀,還有一些外人也認為姐弟戀是不能靠譜過日子的,會有閒言碎語。我覺得姐弟戀在現實生活中的障礙就是兩個人之間可能有代溝,不利於交流,影響兩個人之間的感情,比如說平時處理事情時的辦法不一樣。姐弟戀一般父母都不會同意,其次身邊的人對於這樣的戀情也會有諸多的議論,生活中男方會沒有女方...