如何根據導數判斷最大值最小值。如何計算最值

2021-03-03 21:35:35 字數 5898 閱讀 2130

1樓:demon陌

先求導,然後讓導數等於0,得出可能極值點,然後通過判斷導數的正負來判斷單調性,最後再得出極值,然後再計算端點值,比較大小,最大就是最大值,最小就是最小值。

不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函式一定連續;不連續的函式一定不可導。

對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。

擴充套件資料:

極值是一個函式的極大值或極小值。如果一個函式在一點的一個鄰域內處處都有確定的值,而以該點處的值為最大(小),這函式在該點處的值就是一個極大(小)值。如果它比鄰域內其他各點處的函式值都大(小),它就是一個嚴格極大(小)。

該點就相應地稱為一個極值點或嚴格極值點。

函式的極值 通過其一階和二階導數來確定。對於一元可微函式f (x),它在某點x0有極值的充分必要條件是f(x)在x0的某鄰域上一階可導,在x0處二階可導,且f'(x0)=0,f"(x0)≠0,那麼:

1)若f"(x0)<0,則f在x0取得極大值;

2)若f"(x0)>0,則f在x0取得極小值。

一般的,函式最值分為函式最小值與函式最大值。

最小值:設函式y=f(x)的定義域為i,如果存在實數m滿足:

①對於任意實數x∈i,都有f(x)≥m。

②存在x0∈i。

使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最小值。

最大值:設函式y=f(x)的定義域為i,如果存在實數m滿足:

①對於任意實數x∈i,都有f(x)≤m。

②存在x0∈i。

使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最大值。

2樓:芸欣富

高二數學:利用導數研究函式的極值與最值

導數怎樣求最大值最小值

3樓:匿名使用者

可以把導函式看成一個一般的函式求最值,具體方法要看是一個什麼函式了,也可以進行二次求導。

4樓:匿名使用者

對初等函式f(x)求導,設導數為f『(x)。

令f'(x)=0,得x=x0。

當f'(x)<0時,f(x)遞減;

當f'(x)>0時,f(x)遞增。

結合實際函式,畫個影象,可以直觀地看出最大最小值。

或者用二階導數的知識,不過不太直觀。

怎樣用二階導數判斷函式是最大值還是最小值

5樓:demon陌

y'=0

求出駐點,x1,x2

y『』>0,函式在改點取到最小值。

y''<0,函式在改點取到最大值。

一般的,函式y=f(x)的導數yˊ=fˊ(x)仍然是x的函式,則y′′=f′′(x)的導數叫做函式y=f(x)的二階導數。在圖形上,它主要表現函式的凹凸性。

6樓:匿名使用者

y'=0

求出駐點,x1,x2

y『』>0,函式在改點娶到最小值

y''<0,函式在改點娶到最大值。

7樓:匿名使用者

二級導數為小於零的時候一階導數等於0的那個店就是最大值,反之同理。

怎麼用導數判斷函式最大值和最小值?什麼是駐點?

8樓:匿名使用者

一階導數等於0的點為駐點;導數在駐點 左正右負點的值 為極大值,左負右正點的值 為極小值,然後 極大值和端點值 中最大的是最大值,極小值和端點值 中最小的是最小值。

9樓:匿名使用者

最值必須比較!! 如果是極值,可用二階導數判定!! 駐點就是使導數等於0的點,和不可導點放在一起 就叫 臨界點!!!!

10樓:匿名使用者

求一階導數~~~~~在求一階導數的根~~~用那個根帶入原函式~~~就是函式的最大值或者最小值了~~~

函式的最大值和最小值怎麼算

11樓:是你找到了我

1、利用函式的單調性,首先明確函式的定義域和單調性, 再求最值。

2、如果函式在閉合間隔上是連續的,則通過最值定理存在全域性最大值和最小值。此外,全域性最大值(或最小值)必須是域內部的區域性最大值(或最小值),或者必須位於域的邊界上。

因此,找到全域性最大值(或最小值)的方法是檢視內部的所有區域性最大值(或最小值),並且還檢視邊界上的點的最大值(或最小值),並且取最大值或最小)一個。

3、費馬定理可以發現區域性極值的微分函式,表明它們必須發生在臨界點。可以通過使用一階導數測試,二階導數測試或高階導數測試來區分臨界點是區域性最大值還是區域性最小值,給出足夠的可區分性。

4、對於分段定義的任何功能,通過分別查詢每個零件的最大值(或最小值),然後檢視哪一個是最大(或最小),找到最大值(或最小值)。

12樓:藍藍藍

常見的求最值方法有:

1、配方法: 形如的函式,根據二次函式的極值點或邊界點的取值確定函式的最值.

2、判別式法: 形如的分式函式, 將其化成係數含有y的關於x的二次方程.由於, ∴≥0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.

3、利用函式的單調性 首先明確函式的定義域和單調性, 再求最值.

4、利用均值不等式, 形如的函式, 及≥≤, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.

5、換元法: 形如的函式, 令,反解出x, 代入上式, 得出關於t的函式, 注意t的定義域範圍, 再求關於t的函式的最值. 還有三角換元法, 引數換元法.

6、數形結合法 形如將式子左邊看成一個函式, 右邊看成一個函式, 在同一座標系作出它們的圖象, 觀察其位置關係, 利用解析幾何知識求最值. 求利用直線的斜率公式求形如的最值.

7、利用導數求函式最值2.首先要求定義域關於原點對稱然後判斷f(x)和f(-x)的關係:若f(x)=f(-x),偶函式;若f(x)=-f(-x),奇函式。

如:函式f(x)=x^3,定義域為r,關於原點對稱;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函式.又如:

函式f(x)=x^2,定義域為r,關於原點對稱;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函式.

擴充套件資料:

一般的,函式最值分為函式最小值與函式最大值。簡單來說,最小值即定義域中函式值的最小值,最大值即定義域中函式值的最大值。

函式最大(小)值的幾何意義——函式影象的最高(低)點的縱座標即為該函式的最大(小)值。

最小值設函式y=f(x)的定義域為i,如果存在實數m滿足:①對於任意實數x∈i,都有f(x)≥m,②存在x0∈i。使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最小值。

最大值設函式y=f(x)的定義域為i,如果存在實數m滿足:①對於任意實數x∈i,都有f(x)≤m,②存在x0∈i。使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最大值。

一次函式

一次函式(linear function),也作線性函式,在x,y座標軸中可以用一條直線表示,當一次函式中的一個變數的值確定時,可以用一元一次方程確定另一個變數的值。

所以,無論是正比例函式,即:y=ax(a≠0) 。還是普通的一次函式,即:

y=kx+b (k為任意不為0的常數,b為任意實數),只要x有範圍,即z《或≤x<≤m(要有意義),那麼該一次函式就有最大或者最小或者最大最小都有的值。而且與a的取值範圍有關係

當a<0時

當a<0時,則y隨x的增大而減小,即y與x成反比。則當x取值為最大時,y最小,當x最小時,y最大。例:

2≤x≤3 則當x=3時,y最小,x=2時,y最大

當a>0時

當a>0時,則y隨x的增大而增大,即y與x成正比。則當x取值為最大時,y最大,當x最小時,y最小。例:

2≤x≤3 則當x=3時,y最大,x=2時,y最小 [3]

二次函式

一般地,我們把形如y=ax^2+bx+c(其中a,b,c是常數,a≠0)的函式叫做二次函式(quadratic function),其中a稱為二次項係數,b為一次項係數,c為常數項。x為自變數,y為因變數。等號右邊自變數的最高次數是2。

注意:「變數」不同於「未知數」,不能說「二次函式是指未知數的最高次數為二次的多項式函式」。

「未知數」只是一個數(具體值未知,但是隻取一個值),「變數」可在一定範圍內任意取值。在方程中適用「未知數」的概念(函式方程、微分方程中是未知函式,但不論是未知數還是未知函式,一般都表示一個數或函式——也會遇到特殊情況),

但是函式中的字母表示的是變數,意義已經有所不同。從函式的定義也可看出二者的差別.如同函式不等於函式關係。

而二次函式的最值,也和一次函式一樣,與a扯上了關係。

當a<0時,則影象開口於y=2x² y=½x²一樣,則此時y 有最大值,且y只有最大值(聯絡影象和二次函式即可得出結論)

此時y值等於頂點座標的y值

當a>0時,則影象開口於y=-2x² y=-½x²一樣,則此時y 有最小值,且y只有最小值(聯絡影象和二次函式即可得出結論)

此時y值等於頂點座標的y值

13樓:張家主任

1、函式的最值,要確定函式的單調性。

2、確定函式的定義域。

3、在定義域範圍內單調遞增或單調遞減,那麼最值出現在定義域兩端;如果函式是先增後減,函式拐點處是最大值,如果函式先減後增,拐點處是最小值。

14樓:有嗨咩

分析:f(x)為關於x的函式,確定定義域後,應該可以求f(x)的值域,值域區間內,就是函式的最大值和最小值。

一般而言,可以把函式化簡,化簡成為

f(x)=k(ax+b)²+c 的形式,在x的定義域內取值。

當k>0時,k(ax+b)²≥0,f(x)有極小值c當k<0時,k(ax+b)²≤0,f(x)有最大值c

15樓:雲南萬通汽車學校

一. 求函式最值常用的方法

最值問題是生產,科學研究和日常生活中常遇到的一類特殊的數學問題,是高中數學的一個重點,

它涉及到高中數學知識的各個方面, 解決這類問題往往需要綜合運用各種技能, 靈活選擇合理的解題途徑, 而教材中沒有作出系統的敘述.因此,

在數學總複習中,通過對例題, 習題的分析, 歸納出求最值問題所必須掌握的基本知識和基本處理方程.

常見的求最值方法有:

配方法: 形如的函式,根據二次函式的極值點或邊界點的取值確定函式的最值.

判別式法: 形如的分式函式, 將其化成係數含有y的關於x的二次方程.由於, ∴≥0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.

利用函式的單調性 首先明確函式的定義域和單調性, 再求最值.

利用均值不等式, 形如的函式, 及≥≤, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.

換元法: 形如的函式, 令,反解出x, 代入上式, 得出關於t的函式, 注意t的定義域範圍, 再求關於t的函式的最值.

還有三角換元法, 引數換元法.

數形結合法 形如將式子左邊看成一個函式, 右邊看成一個函式, 在同一座標系作出它們的圖象, 觀察其位置關係, 利用解析幾何知識求最值.

求利用直線的斜率公式求形如的最值.

利用導數求函式最值

2.首先要求定義域關於原點對稱

然後判斷f(x)和f(-x)的關係:若f(x)=f(-x),偶函式;若f(x)=-f(-x),奇函式.

如:函式f(x)=x^3,定義域為r,關於原點對稱;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函式.

又如:函式f(x)=x^2,定義域為r,關於原點對稱;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函式.

高等數學導數應用最大值最小值,高數利用導數求最大值和最小值

y x 2 2 x 1 2 3 在 2,2 上連續。y 2 x 2 x 1 2 3 2 3 x 2 2 x 1 1 3 2 3 x 2 3 x 1 x 2 x 1 1 3 2 3 x 2 4x 1 x 1 1 3 駐點 x 2,x 1 4,導數不存在的點 x 1 y 2 16,y 1 0,y 1 4...

如何求不等式最大值最小值

不等式分幾種 1 基本不等式 2 絕對值不等式 3 柯西不等式 暫時不說平時的不等式例如x 1 2 1 用基本不等式的三要素,滿足這三要素才能用 用基本不等式的數要為正數,3 5 這些就不能用了 用了基本不等式以後為一個定值,a b 2根號 ab 這裡的2根號 ab 一定要為一個數字 滿足以上兩個條...

求最大值和最小值的差值,WORD求最大值和最小值的差值

word也可以進行一些較簡單的計算,但相對來說比較繁瑣和呆板。如你這個問題,首先也要明確word 對單元格也有和excel一樣的行列地址,如貼圖中編號 1的第2行行號是3,因為看你的貼圖,l1 l2等上面還有一行,如查列有合併,也要同樣考慮。所以以編號為1的行為例,h1對應的資料單元格地址為e3,h...