線性代數二次型化為標準型時候求出來的基礎解系怎麼判斷用不用正交化還有怎麼看哪幾個基礎解系需要

2021-03-27 10:13:12 字數 1945 閱讀 5314

1樓:琅琊邢氏

實對稱矩陣不同特徵值對應的特徵向量必然正交啊,不需要正交化了~

我們以二次型矩陣a的特徵矩陣為基礎,利用正交化法進行變換,思路是正交矩陣(aat=e)的轉置等於逆,利用正交矩陣使a對角化(以特徵值為對角線元素的對角矩陣)。

注意:正交矩陣不同列內積均為0,也就是列向量正交,且每列元素平方和均為1,也就是單位化,矩陣列向量正交不代表矩陣就是正交矩陣!

分兩種情況:

二次型矩陣a是實對稱矩陣(必可對角化),如果其特徵值λ互異,那麼對應特徵向量必正交(對角稱矩陣的性質),由其構成的矩陣只需單位化(列向量分別除以模),就可得到正交變換矩陣;

否則,二次型矩陣a相同特徵值對應的特徵向量,取基礎解系構成矩陣,需要施密特正交變換(正交化),然後單位化(勿忘!)。

變換的結果是特徵值λ為係數的標準型。

2樓:匿名使用者

這實際上就是說用正交對角化的方法求標準型

3樓:匿名使用者

兩向量正交,即對應元素相乘後乘積只和為0,則正交。不同特徵值的特徵向量需正交,同一特徵值的不同特徵向量需正交。該題需正交化。

4樓:匿名使用者

實對稱矩陣要正交化,不是實對稱矩陣就不用了

線性代數 矩陣基礎解系怎麼求,以及特徵向量的正交化。

5樓:zzllrr小樂

求特徵值,特徵向量過程如上

6樓:醉瘋症的小男孩

如何求基礎解系和特徵值:網頁連結

特徵向量正交化和對角化:網頁連結

正交變換法化二次型為標準型,中間求基礎解系和正交化單位化是幹什麼的?不是求出特徵值就得出結果了嗎?

7樓:就一水彩筆摩羯

實對稱矩陣不同特徵值對應的特徵向量必然正交啊,不需要正交化了~

我們內以二次型矩陣a的特徵矩陣為容基礎,利用正交化法進行變換,思路是正交矩陣(aat=e)的轉置等於逆,利用正交矩陣使a對角化(以特徵值為對角線元素的對角矩陣)。

注意:正交矩陣不同列內積均為0,也就是列向量正交,且每列元素平方和均為1,也就是單位化,矩陣列向量正交不代表矩陣就是正交矩陣!

分兩種情況:

二次型矩陣a是實對稱矩陣(必可對角化),如果其特徵值λ互異,那麼對應特徵向量必正交(對角稱矩陣的性質),由其構成的矩陣只需單位化(列向量分別除以模),就可得到正交變換矩陣;

否則,二次型矩陣a相同特徵值對應的特徵向量,取基礎解系構成矩陣,需要施密特正交變換(正交化),然後單位化(勿忘!)。

變換的結果是特徵值λ為係數的標準型。

什麼情況下需要將得到的基礎解系正交化?

8樓:小雨手機使用者

記住求出兩個一樣的特徵值時,先施密特正交化再單位化就行了,一個特徵值時專不需要。

基礎解系需要滿足三屬個條件:

(1)基礎解系中所有量均是方程組的解;

(2)基礎解系線性無關,即基礎解系中任何一個量都不能被其餘量表示;

(3)方程組的任意解均可由基礎解系線性表出,即方程組的所有解都可以用基礎解系的量來表示。值得注意的是:基礎解系不是唯一的,因個人計算時對自由未知量的取法而異。

9樓:destination焱

同學,這麼巧

實對稱矩陣不同特徵值所對應的特徵向量就已經相互正交了

而相同特徵值的不一定正交,對不正交的就要做schmidt正交化

對稱矩陣對角化中,將基礎解系正交化單位化的意義何在?

10樓:匿名使用者

因為對角化是指diag(入...)=p^-1ap,實二次型要求的是p^tap=diag(...),所以只有p^-1=p^t時,p^tap=diag(入...

),而只有正交矩陣才滿足這個條件。

線性代數二次型化為標準型,線性代數二次型的標準型,規範型的區別 請詳細說明,謝謝了

我給你做第一題的第一小題和第二題,第一題的第2小題與第1小題類似 線性代數二次型化為標準型 二次型矩陣 a 2 2 0 2 1 2 0 2 0 e a 2 2 0 2 1 2 0 2 1 2 4 2 4 1 2 8 1 1 2 2 8 1 4 2 特徵值 4,1,2.對於特徵值 4,e a 2 2 ...

線性代數二次型化標準型,線性代數,這個二次型能化為規範型嗎怎麼化

二次型對稱矩陣a 17 2 2 2 14 4 2 4 14 使用合同變換 可以得到 17 y1 2 234 17 y2 2 162 13 y3 2 注意,此題答案不唯一,還可以化內為規容範形 1 y1 2 1 y2 2 1 y3 2 此題目用配方法最簡單,不過我還是提供一種最典型的完整做法吧.線性代...

線性代數,化二次型為標準型,線性代數二次型化為標準型

求出的t是正交矩陣,那麼,t的逆等於t的轉置。這樣,就可以省掉求逆的過程,你不妨試試 t的轉置 a t 看看是不是題中的結果。線性代數二次型化為標準型 二次型矩陣 a 2 2 0 2 1 2 0 2 0 e a 2 2 0 2 1 2 0 2 1 2 4 2 4 1 2 8 1 1 2 2 8 1 ...