地轉偏向力為什麼與風向垂直,為什麼地轉偏向力與風向垂直

2021-05-05 09:23:12 字數 5912 閱讀 7852

1樓:邶真訾嵐彩

事實上,地轉偏向力與所有水平執行的東西都垂直。

2樓:

地轉風是氣壓梯度力和地轉偏向力相平衡時,自由大氣中空氣作等速、直線的水平運動。地轉風方向與水平氣壓梯度力的方向垂直,即平行於等壓線。因而,若背風而立,在北半球高壓在其右方,在南半球,高壓在其左方,稱白貝羅風壓律。

地轉風速隨緯度增高而減小。但實際觀測到的地轉風速卻是高緯度地區大於低緯度地區。這是由於高緯度的氣壓梯度值遠遠大於低緯度的緣故。

由於地轉風是g和a達到平衡時的空氣水平運動,因而是穩定的直線運動,風向與等壓線平行,等壓線也是相互平行的。嚴格說,等壓線還應平行於緯圈,因為地轉偏向力隨緯度有變化,只有等高線平行於緯線時才能達到處處氣壓梯度力與地轉偏向力相平衡,以獲得穩定的直線運動。實際大氣中,這種嚴格的理論上的地轉風是很少存在的。

中高緯度自由大氣中的實際風與地轉風十分相近,水平運動基本上是地轉的。在低緯度地轉偏向力很小,地轉風的概念已不適用。對於一地來說,緯度相同,只要比較各層等壓面圖上的等高線疏密程度,就可確定各層風速的大小。

地球上水平運動的物體,無論朝著哪個方向運動,都會發生偏向:在北半球向右偏,在南半球向左偏,這種現象稱作地球自轉偏向力。物體靜止時,不受地轉偏向力的作用,地轉偏向力是地球自轉運動影響的結果,當物體運動時,由於其本身的慣性作用,總是力圖保持其原來的運動方向和運動速度,地轉偏向力的方向同物體運動的方向相垂直,並且對物體的運動方向產生一定影響,使之向右或向左偏轉。

地球自轉的線速度各地不同,在北半球,當氣流自北向南運動時,即從自轉速度較小的緯度吹向自轉線速度較大的緯度,這時,氣流會偏離始發時的經線,發生向右偏,即原來的北風逐漸轉變為東北風;其他情形也是同樣的道理。在赤道上作水平運動的物體不會發生偏向現象,因為赤道上的自轉偏向力為零。

風在氣壓梯度力的作用下吹起來了。可是出人意料,風一旦起步行走,卻並不朝著氣壓梯度力所指的方向從高壓一邊直接邁向低壓一邊,而是不斷地偏轉它的方向,在北半球向右偏轉,在南半球則向左偏轉。這是無數次觀測早已證明了客觀事實。

可見,一定還有一種什麼力量從風的一側拉著它轉向。

經過人們深入實踐和研究,這種力終於找到了。這就是地轉偏向力。這個名稱的本身就已告訴我們:

促使風向發生偏轉的力量原來是因為地球自轉而引起的。在不停地旋轉著的地球上,受地轉偏向力作用的不僅是風,一切相對於地面運動著的物體都受到它的作用,不過因為地轉偏向力和物體受到的其他力比較起來極為渺小,不為人們覺察罷了。儘管如此,在經歷了漫長的歲月以後,地轉偏向力還是在地球上某些地方留下了它的痕跡。

人們發現,沿著水流的方向,在北半球,河流的右岸往往比左岸陡峭;在南半球,河流的左岸比右岸陡峭。這是地轉偏向力存在的一個見證。這種水流對左右岸沖刷作用的差異是微不足道的,但河裡的水日夜奔流,一千年,一萬年,一億年,就會顯現出來的。

那末地球自轉怎麼會產生偏向力的呢?

要解答這個問題,先來做一個實驗:

用紙板做一個圓盤,把圓盤的中心固定起來,使它能夠轉動,再準備一支鉛筆、一把直尺就行了。把直尺放在圓盤上,隨便取什麼方向都行。然後讓鉛筆緊靠直尺的邊沿在圓盤上前進。

這時候筆尖在圓盤上留下痕跡ab當然是一條直線。這說明在不轉動的圓盤上,運動著的筆尖完全遵循你手用力的方向前進,並沒有什麼偏向力來干擾。

但如把圓盤轉動起來而使直尺仍保持原來的位置固定不動,偏向力就馬上顯示出它的作用來,你請助手以逆時針的方向來轉動圓盤,你仍和剛才一樣,讓鉛筆尖緊挨著直尺邊沿前進,前進的方向,按上下左右各個方向都可試一試。當筆尖從直尺邊沿的起跑點a跑至b處時,圓盤已轉動了一個角度,圓盤上筆尖下的起跑點a轉到a′的,結果筆尖在圓盤上留下的痕跡a′b便不是直線,而是一條不斷向右偏轉的曲線。如果你的助手按照順時針方向來轉動圓盤,那麼筆尖在圓盤上留下的足跡是一條不斷向左偏轉的曲線。

這時候對直尺來說,筆尖的運動始終呈直線狀態,因為它始終沒有離開直尺的邊沿呀!但是對轉動著的圓盤來說,筆尖的運動明明是曲線運動。

地球一刻不停地自轉,人們腳下踩著的大地就好象是一隻轉動著的大圓盤。從北極上空往下望,這隻大圓盤以逆時針方向在運轉;從南極上空往下望,這隻大圓盤運轉的方向則是順時針的。走在這隻大圓盤上的空氣―風,之所以發生偏向,就是由於風與轉動著的地面發生了相對運動。

長年累月的水流,能在兩岸顯現出偏向力的作用,也正是因為它們與轉動著的地面之間產生相對運動的結果。

這樣看來,風偏離氣壓梯度力的方向,並不是真有一個什麼力量在起作用。地轉偏向力不過是人們為了便於對這種偏向現象進行研究而假想的一種力。這種假想的力與風向是垂直的,在北半球指向風向的右側,而在南半球指向風向的左側。

由於它只說明空氣和轉動著的地面之間存在相對運動,而並不是作用於空氣的實際的力,因此只能使風向偏轉,而不能使風起動,也不能使已經起動的風改變速率。風的起動和快慢,都取決於氣壓。如果氣壓梯度力等於零,風無從產生,也就談不上與地面之間的相對運動,地轉偏向力也不復存在。

而有了氣壓梯度力,也必然會相應地產生風,從而也產生地轉偏向力,而且風愈大,產生的地轉偏向力也愈大。

風在氣壓梯度力作用下被推向低氣壓一側,當風一旦起步向前,地轉偏向力立刻產生,並把風拉向右邊(如左圖)。風在氣壓梯度力的持續推動下加快速度,越吹越大,地轉偏向力也跟著加大,使勁地拉著風向右偏轉(如右下圖)。由於地轉偏向力的方向與風向時刻保持垂直,於是在拉轉風向的同時,地轉偏向力本身也不斷向右偏轉,也就是越來越轉到氣壓梯度力的反方向去。

當風向被拉轉到和氣壓梯度力的方向成90度的角度時,雖然氣壓梯度力依舊存在,且和先前一樣大小,但在風的方向上有效分力已等於零,因而風不再受力的作用速,而靠著慣性等速前進。這時候地轉偏向力也正好轉到了氣壓梯度力的背後,矛盾著的雙方大小相等,方向相反。從先前的不平衡狀態進行平衡狀態,於是風向也不再偏轉。

由圖顯然看出,在平衡狀態下,風向與等壓線保持平行。

自從發現了這種平衡規律,給氣象工作者帶來許多方便。氣壓和風的關係變得這樣密切:知道了氣壓的分佈就可以推知風的分佈;同樣,知道了風的分佈也可反過來推知氣壓的分佈。

為了便於記憶,人們把氣壓與風的關係概括成這樣的定律:風速與氣壓梯度成正比;風向與等壓線平行,在北半球,背風而立,高氣壓在右,低氣壓在左;南半球則相反。

舉例來說,在氣壓分佈中,北京附近等壓線呈西南到東北走向,高氣壓在東南側,低氣壓在西北側,按前面總結的規律,就可以推測北京吹的是西南風,而上海附近等壓線呈東西走向,高氣壓在北側,低氣壓在南側,按規律應該吹東風。再看,上海附近的等壓線比北京附近稀疏,因此上海的風應比北京小。又如,北京吹北風而上海吹南風,按規律,兩地附近的等壓線分佈,都應該是南北向的,但在北京附近的氣壓西側高於東側,而上海則相反。

又由於上海的風力比北京為大,因此上海附近的氣壓梯度比北京大,等壓線也比北京附近密集。

大氣就象一個自動調節器一樣,氣壓梯度力和地轉偏向力間的平衡與不平衡可以自動調整。雖然很難達到絕對的平衡,實際風也很難和等壓線保持絕對的平行,但風向始終在等壓線兩則偏離得不太遠。因而理論上的風與實際上的風仍然非常近似,氣壓與風的關係一直被廣大氣象臺站作為大氣運動規律而被利用著。

3樓:匿名使用者

- -這個過程是個計算公式, 是個公式- -

換而言之,知道了地轉偏向力是什麼,它是怎麼出來的,在根據風是怎麼來的,和地轉偏向力有什麼關係,知道了它們之間有什麼關係的特徵,然後根據正確的公式來推算出地轉偏向力與風向垂直

4樓:森白竹

這個也許是你想要的

為什麼地轉偏向力與風向垂直

5樓:兆聽然

地轉偏向力與風向是垂直的,在北半球指向風向的右側,而在南半球指向風向的左側。由於它只說明了空氣和轉動著的地面之間存在相對運動,而並不是作用於空氣的實有的力,因此只能使風向偏轉,而不能使風起動,也不能使已經起動的風改變速率。風的起動和快慢,都取決於氣壓梯度力。

如果氣壓梯度力等於零,風無從產生,也就談不上與地面之間的相對運動,地轉偏向力也不復存在。而有了氣壓梯度力,也必然會相應地產生風,從而也產生地轉偏向力,而且風愈大,產生的地轉偏向力也愈大。

風在氣壓梯度力作用下被推向低氣壓一側,但當風一旦起步向前,地轉偏向力立刻產生,並把風向拉向右邊(指北半球)。風在氣壓梯度力的持續推動下加快速度,越吹越大,地轉偏向力也跟著加大,使勁地拉著風向右偏轉。由於地轉偏向力的方向與風向時刻保持垂直,於是在拉轉風向的同時,地轉偏向力本身也不斷向右偏轉,也就是越來越轉到氣壓梯度力的反方向去。

當風向被拉到轉到和氣壓梯度力的方向成90度的角度時,雖然氣壓梯度力依舊存在,且和先前一樣大小,但在風的方向上有效分力已等於零,因而風不再受力的作用加速,而靠著慣性等速前進。這時候地轉偏向力也正好轉到了氣壓梯度力的背後,於是風向也不再偏轉。在平衡狀態下,風向與等壓線保持平行。

6樓:十字軍刀客

風在氣壓梯度力的作用下吹起來了。可是出人意料,風一旦起步行走,卻並不朝著氣壓梯度力所指的方向從高壓一邊直接邁向低壓一邊,而是不斷地偏轉它的方向:在北半球向右偏轉,在南半球則向左偏轉。

是什麼力量在將空氣直接從高氣壓向低氣壓流動中向一側拉動呢?

地轉偏向力:這個名稱的本身就已告訴我們:促使風向發生偏轉的力量原來是因為地球自轉而引起的。

在日夜不停地旋轉著的地球上,受到地轉偏向力作用的不僅是風,一切相對於地面運動著的物體都會受到它的作用,不過因為地轉偏向力和物體受到的其他力比較起來極為渺小,不為人們覺察罷了。儘管如此,在經歷了漫長的歲月以後,地轉偏向力還是在地球上某些地方留下了它的痕跡。比如,沿著水流的方向,在北半球,河流的右岸往往比左岸陡峭;在南半球,河流的左岸比右岸陡峭;這是地轉偏向力存在的一個見證。

這種水流對左右岸沖刷作用的差異是微不足道的,但河裡的水日夜奔流,一千年,一萬年,一億年,終於顯現出來了。

地球自轉為什麼會產生偏向力呢?讓我們來做一個示意性實驗。

準備一個圓盤,把圓盤的中心固定起來,使它能轉動,再準備一支筆,一把直尺。

將圓盤固定,不轉動。把直尺放在圓盤的任意位置。然後用鉛筆緊靠直尺的邊沿在圓盤上劃直線。這時候筆尖在圓盤上留下的痕跡ab當然是一條直線。

這說明在不轉動的圓盤上,運動著的筆尖完全遵循你手用力的方向前進,沒有偏向力來干擾。

現在以逆時針的方向把圓盤轉動起來,而使直尺仍保持原來的位置固定不動,讓鉛筆尖緊挨著直尺邊沿前進,前進的方向,上下左右各個方向都可試一試,這回情況就與靜止的圓盤不同了:當筆尖從直尺邊沿的起跑點a跑至b處時,圓盤己轉動了一個角度,圓盤上筆尖留下的起跑點a轉到了a'的位置,結果筆尖在圓盤上留下的痕跡a'b便不是直線,而是一條不斷向右偏轉著的曲線。

如果以順時針方向來轉動圓盤,那麼筆尖在圓盤上留下的足跡是一條不斷向左偏轉的曲線。

對直尺來說,筆尖的運動始終呈直線狀態,因為它始終沒有離開直尺的邊沿。但是對轉動著的圓盤來說,筆尖的運動明明是曲線運動。這就是偏向力在起作用!

地球一刻不停地自轉著,人們腳下踩著的大地就好象是一隻轉動著的大圓盤。你從北極上空往下望,這隻大圓盤以逆時針方向在運轉;你再從南極上空往下望,大圓盤運轉的方向則是順時針的。走在這隻大圓盤上的空氣--風,之所以發生偏向,就是由於風與轉動著的地面發生了相對運動,地轉偏向力將風拉向一側。

而如果是在赤道上,由於地轉偏向力為零,風向不會偏轉。

地轉偏向力與風向是垂直的,在北半球指向風向的右側,而在南半球指向風向的左側。由於它只說明了空氣和轉動著的地面之間存在相對運動,而並不是作用於空氣的實有的力,因此只能使風向偏轉,而不能使風起動,也不能使已經起動的風改變速率。風的起動和快慢,都取決於氣壓梯度力。

如果氣壓梯度力等於零,風無從產生,也就談不上與地面之間的相對運動,地轉偏向力也不復存在。而有了氣壓梯度力,也必然會相應地產生風,從而也產生地轉偏向力,而且風愈大,產生的地轉偏向力也愈大。

風在氣壓梯度力作用下被推向低氣壓一側,但當風一旦起步向前,地轉偏向力立刻產生,並把風向拉向右邊(指北半球)。風在氣壓梯度力的持續推動下加快速度,越吹越大,地轉偏向力也跟著加大,使勁地拉著風向右偏轉。由於地轉偏向力的方向與風向時刻保持垂直,於是在拉轉風向的同時,地轉偏向力本身也不斷向右偏轉,也就是越來越轉到氣壓梯度力的反方向去。

當風向被拉到轉到和氣壓梯度力的方向成90度的角度時,雖然氣壓梯度力依舊存在,且和先前一樣大小,但在風的方向上有效分力已等於零,因而風不再受力的作用加速,而靠著慣性等速前進。這時候地轉偏向力也正好轉到了氣壓梯度力的背後,於是風向也不再偏轉。在平衡狀態下,風向與等壓線保持平行。

為什麼赤道上沒有地轉偏向力,地轉偏向力為什麼在赤道沒有?

首先,地球上的物體受到了地球的引力,是指向地心的,由於地球在轉動,向心力也就是我們所說的重力指向地軸,根據力的分解,物體還有指向赤道的偏向力,而在赤道上的物體,因為地心引力也就是重力,偏向力為零!地球上水平運動的物體,無論朝著哪個方向運動,都會發生偏向 在北半球向右偏,在南半球向左偏,這種現象稱作地...

為什麼地轉偏向力北半球向右,南半球向左

首先要說明的是,地轉偏向力向右是在北半球,在南半球則都向左,當然這些向右向左都是相對於前進方向來說的,下面說的都是北半球的情況.1.由於除南北兩極外,各緯度的角速度都一樣,從北向南飛的時候,南邊的圈大,即越向南緯線越長,所以線速度大,所以在北邊的時候具有的一個小的線速度與南邊的線速度相比就顯的慢了,...

為什麼力矩的方向垂直於軸與力,為什麼力矩的方向是垂直於力和力臂所確定的平面?

在純轉動時,力矩的方向就是轉動軸的方向,判斷力矩方向時採用右手螺旋定則,四指方向先指向力的方向,然後彎向力臂方向,此時大拇指的方向就是力矩的方向。力矩是角動量隨時間的導數,就像力是動量隨時間的導數。向量積。方向滿足右手定則。為什麼力矩的方向垂直於軸與力 其實就像向心力不做功是一樣的道理 垂直於定軸的...